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Summary A simulation study was carried out to develop an alternative method of selecting animals to

be genotyped. Simulated pedigrees included 5000 animals, each assigned genotypes for a

bi-allelic single nucleotide polymorphism (SNP) based on assumed allelic frequencies of 0.7/

0.3 and 0.5/0.5. In addition to simulated pedigrees, two beef cattle pedigrees, one from field

data and the other from a research population, were used to test selected methods using

simulated genotypes. The proposed method of ant colony optimization (ACO) was evaluated

based on the number of alleles correctly assigned to ungenotyped animals (AKP), the

probability of assigning true alleles (AKG) and the probability of correctly assigning geno-

types (APTG). The proposed animal selection method of ant colony optimization was

compared to selection using the diagonal elements of the inverse of the relationship matrix

(A)1). Comparisons of these two methods showed that ACO yielded an increase in AKP

ranging from 4.98% to 5.16% and an increase in APTG from 1.6% to 1.8% using simulated

pedigrees. Gains in field data and research pedigrees were slightly lower. These results

suggest that ACO can provide a better genotyping strategy, when compared to A)1, with

different pedigree sizes and structures.
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Introduction

Interest in identifying QTL of economic importance for

marker-assisted selection in livestock populations has

increased greatly in the past decade. However, it may not be

viable to genotype each animal because of cost, time or lack

of availability of DNA. A method that could select a subset

(e.g. 5%) of the population for genotyping, and at the same

time infer the genotypes for the remaining animals in the

population with high probability, could be beneficial. By

using such a method, fewer animals in a population would

be needed for genotyping, which would decrease the time

and cost of genotyping. Theoretically, the problem at hand

is simple to solve. If it were possible to evaluate every

possible subset of animals equal to the desired size (e.g. 5%),

the optimal solution could be found. Unfortunately, such an

approach is computationally impossible at present, and

consequently an optimal solution is needed. Several meth-

ods including segregation analysis have been applied to

selectively genotype animals in an attempt to reduce

genotyping costs (Kinghorn 1999; Macrossan et al. 2001).

An intuitive approach would be one that selects animals

based on their relationship with other animals in the pedi-

gree, such as those suggested by Spangler et al. (2008).

However, the heterozygosity and the structure of the pedi-

gree also play important roles and therefore must be

accounted for in some manner.

Given the limitations of a hard search procedure and the

use of animal relationships, an alternative approach, view-

ing the problem as one of optimization, may be better suited.

Although evolutionary algorithms and machine learning

have been applied to the issues of group and selective

genotyping (Macrossan & Kinghorn 2003a; Kinghorn et al.

2006), an optimization technique such as ant colony

optimization (ACO) has not been explored. Ant colony

algorithms (ACA) were proposed by Dorigo et al. (1999) as a
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means to solve difficult optimization problems such as the

travelling salesman problem, and have since been extended

to solve many discrete optimization problems. As the name

would imply, ACA are derived from the process by which

ant colonies find the shortest route to a food source. Real

ant colonies communicate through the use of chemicals

called pheromones, which are deposited along the path an

ant travels. Ants that choose a shorter path will transverse

the distance at a faster rate, thus depositing more phero-

mone. Subsequent ants will then choose the path with more

pheromone, creating a positive feedback system. In ACA,

artificial ants work as parallel units that communicate

through a cumulative distribution function (CDF) that is

updated by weights, determined by the �distance� travelled

on a selected �path�, which are analogous to the pheromones

deposited by real ants (Dorigo et al. 1999; Dorigo & Stuetzle

2004; Ressom et al. 2007). As the CDF is updated, �paths�
that perform better will be sampled at higher likelihoods by

subsequent artificial ants, which in turn, deposit more

�pheromone�, thus leading to a positive feedback system

similar to the method of communication observed in real

ant colonies.

In the specific application of feature selection, the �path�
chosen by an artificial ant is a subset of features selected

from a larger sample space, and the �distance� travelled is

some measure of the feature’s performance. In the case of

genotyping, the ACA should select a subset of animals that,

when genotyped, should give an optimal performance in

terms of extrapolating the alleles of non-genotyped animals.

Therefore, the objectives of the current study were to

investigate the usefulness of a search algorithm as imple-

mented by Ressom et al. (2007) to optimize the amount of

information that can be extracted from a pedigree whilst

only genotyping a small portion. The results of the proposed

method are compared with other viable methods to ascer-

tain any potential gain. The procedures were tested using

simulated pedigrees and actual beef cattle pedigrees of

varying sizes and structures.

Materials and methods

Overview

A search algorithm was implemented to select candidates

for genotyping with preference given to animals that have a

large number of offspring and/or mates. The algorithm

utilized artificial ants that selected subsets of animals to be

genotyped at each iteration. These subsets were then eval-

uated based on their performance, which was derived by an

accuracy function that accounted for their number of

mates, number of offspring, and the homozygosity of their

mates and offspring. This performance was then added to

the pheromone concentration of each animal in the subset.

As the pheromone concentration of a particular animal

increases, it makes that animal more likely to be chosen by

other ants. As the algorithm reaches convergence, ants will

�burn in� on a particular group of animals that have the

highest cumulative pheromone concentration. This group of

animals, in this case 5% of the pedigree, would then be

chosen to genotype. This method of ACO is described in

detail below.

Ant colony optimization

The ACA, as defined by Dorigo et al. (1999) and Ressom

et al. (2007), is a group of parallel units with a common

memory in the form of a probability distribution function

(PDF), where the probability of sampling feature, in this

context an animal to be genotyped, m at time t is defined

as:

PmðtÞ ¼
ðsmðtÞÞagb

mP
m
ðsmðtÞÞagb

m

; ð1Þ

where smðtÞ is the amount of pheromone for feature m at

time t; gm is some form of prior information on the expected

performance of feature m; a and b are parameters deter-

mining the weight given to pheromone deposited by ants

and a priori information on the features.

As a method of foundation sampling, the ACA is initial-

ized with all features having an equal baseline level of

pheromone, which is used to compute Pm(0) for all features.

Using the PDF as defined in equation (1), each of j artificial

ants will select a subset Sk of n features from the sample

space S containing all features. The pheromone level of each

feature m in Sk is then updated according to the perfor-

mance of Sk as:

smðtþ 1Þ ¼ ð1� qÞ � smðtÞ þ DsmðtÞ; ð2Þ

where q is a constant between 0 and 1 that represents the

rate at which the pheromone trail evaporates; DsmðtÞ is

the change in pheromone level for feature m based on the

performance of Sk, and is set to zero if feature m =2 Sk. This

process is repeated for all Sk, k = 1,…, j.

Following the update of pheromone levels according to

equation (2), the PDF is updated according to equation (1)

and the process is repeated until some convergence criteria

are met. Upon convergence, the optimal subset of features is

selected based on the level of pheromone trail deposited on

each feature.

In the specific case of selecting individuals for geno-

typing, the features are candidate animals for genotyping

from a full or partial pedigree. In the case where only a

subset of animals are genotyped and the remainder are

inferred from known genotyped animals, it is logical to

choose candidates for genotyping based on some measure

of their relationship with other animals. The pheromone of

some feature, m, in the current study was proportional to
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the sum of an animal�s number of mates and number of

offspring.

smðtÞ ¼ numoffm þ nummatem; ð3Þ

where numoffm and nummatem were the number of off-

spring and number of mates for animal m at time t

respectively. If any animal with a large sum from equa-

tion (3) were to be genotyped, then more knowledge can be

gained from the population as a whole due to the rela-

tionship (either as a parent or mate) of the genotyped ani-

mal and others in the pedigree. Offspring and mates in the

equation above were given equal weights. This is because it

is possible to infer the missing genotype of an offspring,

given knowledge of both parent genotypes, as easily as it is

to infer the missing genotype of a mate given the offspring�s
genotype and the genotype of the other parent.

Consequently, the performance of a particular subset, Sk,

is determined the by the cumulative sum as described above

for each of n animals in the subset.

smðtÞ ¼
Xn

m¼1

numoffm þ nummatem: ð4Þ

Outside of actual ant colonies, and with regard to the

current study, it is difficult to assign a biological explanation

to the evaporation rate or q. However, the evaporation rate

serves as the memory of the algorithm, and a fast evapo-

ration rate will avoid the possibility of accepting local

optimums, while a slow evaporation rate will allow for

faster convergence. Because of the size and complexity of

pedigrees used in the current study, a relatively small value

of evaporation rate (0.01) was chosen in an attempt to

reach convergence faster. For each of j artificial ants, a

subset of animals were chosen equal to approximately 5% of

the pedigree size.

For the five replicates of simulated pedigrees, 100 ants

were used for each of 30 000 iterations. Each animal in the

pedigree was randomly assigned a test genotype that was

either homozygous or heterozygous. The probability of an

animal being assigned to one of these two groups was

dependant on the allelic frequencies such that if the allele

frequencies were assumed to be 0.7/0.3 then approxi-

mately 58% of the animals would be categorized as

homozygous based on Hardy–Weinberg Laws of equilib-

rium. The assignment of homozygous/heterozygous status

was performed at each iteration. If a selected animal was

homozygous then his/her number of mates and number of

offspring were corrected such that the number of offspring

only reflected heterozygous offspring. The same correction

was made for the number of mates. These corrections were

made with the following rationale: If a selected animal is

homozygous then more knowledge can be extracted about

missing genotypes if his/her mates/offspring are heterozy-

gous, because it is known with complete certainty what

allele the genotyped animal will pass on. Similarly, if a

selected animal was heterozygous, the number of offspring

and the number of mates reflected a count of only homo-

zygous individuals. An animal�s probability of being se-

lected was based on maximizing the corrected sum of the

animal�s number of offspring and number of mates. The

accuracy for evaluating a selected group of animals was

proportional to this corrected sum. The uncorrected or

original sum of each animal was used as prior information.

Selected animals were chosen based on their cumulative

probability and were assumed to have known genotypes for

the peeling procedure. Simulated allele frequencies for a

single nucleotide polymorphism (SNP) of 0.7/0.3 and 0.5/

0.5 were used to assign genotypes to the animals in the

pedigree. Admittedly, one could reasonably expect in-

creased performance by using knowledge of the pedigree

structure, such that at every iteration and for every ant the

chosen set of animals is evaluated based on the amount of

genotypic information that can be inferred from genotyped

animals. However, this proved to be computationally

costly. Additional increases in performance could be ex-

pected if selection of an animal is dependent on whether or

not a full-sib or other close relative is also selected.

In the case of the field data pedigree (Spangler et al.

2008), the same parameters were used as in the simulated

pedigrees with the following exceptions: 100 ants were used

for each of 5000 iterations. The top 1455 animals of

29 101 were selected (5% of the total pedigree) based on the

pheromone deposited by the artificial ants and were

assumed to have known genotypes for the peeling proce-

dure. In the case of the research pedigree (Spangler et al.

2008), 100 ants were used for each of 20 000 iterations.

The top 434 of 8688 animals were selected (5% of the total

pedigree) based on the same criteria.

Peeling

Given that genotypes in this study were assigned at random

in the population, it is possible to extract additional genotypic

information from the pedigree. Animals with missing geno-

typic information can be assigned one or both alleles given

parental, progeny, or mate information. Given this trio of

information sources and following an algorithm similar to

Qian & Beckmann (2002) and Tapadar et al. (2000), impu-

tations on missing genotypes were made and additional

genotypic information was garnered. Terminal animals,

which are parents without known parents themselves and

only one offspring, or progeny with only one known parent

and no offspring themselves, are temporarily removed

(peeled) and all of their genotypic information is transferred

to the core of the pedigree, creating another set of terminal

animals. This process is repeated until no further genotypic

information can be garnered. For the current study, it was

assumed that there were no errors in the recorded pedigree,

resulting in all animals having known paternity and
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maternity. Whenever possible, maternal and paternal alleles

were identified based on the inheritance. For the purpose of

this study, the first allele was inherited from the sire and the

second allele was inherited from the dam. If the parental

origin of an allele was unclear, then the allele was arbitrarily

assigned as either the paternal or maternal allele.

After the peeling process, the number of animals with

one or two alleles known was computed. This was

performed by simply counting the number of animals that

were assigned either one or two alleles based on the peeling

procedure described above. The percentage of alleles known

based on the peeling procedure (AKP) was then computed

as follows:

AKP ¼
ðn1 � 2Þ þ n2

na � 2

� �
� 100; ð5Þ

where n1 and n2 were the number of animals with two and

one allele(s) known and na was the total number of animals

in the population. Due to the assumption of a SNP with two

alleles, n1 and na were multiplied by two because each

animal has two alleles.

Gibbs sampling

After the known alleles were determined by the peeling

process described above, a Gibbs sampler (Fernandez et al.

2001; Wang et al. 1993; Sorenson et al. 1994; Sheehan

2000) was implemented to assign genotypes to the

remaining animals in the population using known alleles as

prior information. For the base population animals, the

unknown allele(s) was(were) randomly sampled given the

frequency of alleles in the population and the assumption of

Hardy–Weinberg equilibrium. Unknown alleles for non-base

population animals were randomly sampled from the par-

ent�s genotypes according to Mendelian rules. An equal

weight was assumed for inheriting either the first or second

allele from a parent. For a non-base population animal that

had only one unknown allele, the unknown allele was

sampled approximately half of the time from the sire�s
genotype and the remaining time from the dam�s genotype.

This was to compensate for incorrect assignment of the

known allele as illustrated in the above example. Methods of

assigning genotype probabilities using segregation analysis

without sampling have been described by Thallman et al.

(2001).

At the end of the sampling process, a benefit function that

described the total number of alleles known in the popula-

tion was computed. This function was computed from a

combination of known alleles and the probability of

unknown alleles assigned during the sampling process. In

order to be included in the benefit function, an allele in

a particular position had to be equal to the true allele of the

same position (i.e. Bb and bB were not equal). The proba-

bility of allele ai,j (j = 1 or 2) being assigned as the true allele

j for animal i was calculated as:

pðai;jÞ ¼
number of times ai;j was assigned

number of iterations
: ð6Þ

Using p(ai,j) and the number of known alleles, the benefit

function was then computed as:

Benefit¼ n1�2þ
Xn2

i¼1

½1þpðai;jÞ�þ
Xn3

i¼1

½pðai;1Þþpðai;2Þ�; ð7Þ

where n1, n2 and n3 were the number of animals with 2, 1

or 0 alleles known respectively and p(ai,j) as previously de-

fined. The percentage of alleles known after the Gibbs

sampling process, AKG, was such that

AKG ¼
benefit

na � 2

� �
� 100; ð8Þ

where �benefit� was the benefit function computed above

and na was the total number of animals in the population.

During each round of the sampling process, only one

genotype of a given animal was assigned as the true

genotype. Thus, at the end of the sampling process every

animal had a probability of having the true genotype, PTGig,

assigned as

PTGig ¼
number of times genotype g was assigned

total number of samples
; ð9Þ

where genotype g was the true genotype for animal i. The

average probability of the true genotype being identified for

every animal in the population (APTG) was computed using

the following:

APTG ¼

Pna

i¼1

PTGig

na
; ð10Þ

where PTGig was defined as above and na was the total

number of animals in the population. In contrast to the

benefit function, APTG only required that the animal has

the correct genotype – Bb was considered the same geno-

type as bB – and therefore was able to compensate for the

incorrect allele position and sampling the correct unknown

allele.

Simulation

A simulation using an animal model was carried out to

investigate methods of selecting animals for genotyping

and methods of maximizing the genetic information of the

population. A pedigree with four overlapping generations

was simulated. The base population included 500 unre-

lated animals and subsequent generations consisted of

1500 animals with a total of 5000 animals generated. For

the simulated pedigrees as well as the field data and

research pedigrees, one SNP with two alleles was

simulated for every animal in the pedigree file. Genotypes

of the base population animals were assigned based on
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allele frequencies. For the subsequent generations, geno-

types were randomly assigned using the parent�s genotype,

where an equal chance of passing either the first or second

allele was assumed. Five replicates of the simulated data

were generated.

Two different frequencies for the favourable allele were

used in the simulation and analyses. The frequencies were

0.30 and 0.50. For the analyses using Gibbs sampling, a

total chain length of 25 000 iterations of the Gibbs sampler

was run, where the first 5000 iterations were discarded as

burn-in.

Results

Simulated pedigrees

The results can be found in Table 1. The ACO method

appeared to be the most desirable method of those discussed

in the current study. Compared with selecting 5% of the

animals at random, ACO showed gains in AKP, AKG and

APTG ranging from 261.09% to 262.93%, 19.97% to

26.04% and 23.5% to 29.6% respectively. An intuitive and

simplistic method of selecting animals for genotyping would

be to select those with larger values for the diagonal ele-

ment of the inverse of the relationship matrix, because a

larger value would indicate more connectedness with other

animals in the pedigree. As compared to the favourable

method of the alternative approaches, selecting males and

females based on the diagonal element of the inverse of the

relationship matrix, the increase in AKP ranged from

4.98% to 5.16%. This gain is due to the number of animals

with both alleles known after the peeling process, which

was between 20.74% and 21.07% larger in favour of ACO.

The increase in APTG ranged from 1.6% to 1.8% in favour

of ACO over selecting males and females from their diag-

onal element.

Field data pedigree

A field data pedigree as described by Spangler et al. (2008)

was used to determine the effectiveness of the proposed

method in a larger pedigree that was more representative of

what might be encountered in the beef cattle industry.

Results can be found in Table 2 along with results from

alternative approaches. The largest gains were seen in AKP,

which ranged from 150.00% to 171.62%, 2.95% to 3.04%,

and from 1.80% to 1.94% as compared to random selection,

selection of males and females from A)1, and selection of

males from A)1 respectively. ACO also showed gains in AKG

and APTG over random selection between 70.06% and

74.91% and between 14.3% and 15.4% respectively.

Table 2 shows some advantages of ACO over the methods

using the diagonal element of A)1 for the parameters of AKG

and APTG.

Research pedigree

The research pedigree used here has been previously

described by Spangler et al. (2008). Results from the ACO

analysis can be found in Table 3. As compared to randomly

selecting 5% of the animals, ACO showed increases in AKP,

AKG and APTG ranging from 241.24% to 302.58%,

42.93% to 43.17% and 20.9% to 38.0% respectively.

Realized gains in AKP of ACO over selecting males from A)1

or males and females from A)1 ranged from 8.78% to

10.15% and 2.04% to 3.40% respectively.

Discussion

The results suggest that ACO is the more desirable method

of selecting candidates for genotyping, particularly after

peeling (AKP). From these results, it appears that the

number of offspring and the number of mates, along with

Table 1 Number of animals with one or two alleles known, percentage of alleles known (SD) and probability of assigning the true genotype (SD)

from multiple approaches1 compared to ant colony optimization using simulated pedigrees2.

True allele frequency

Random Males Males and females Ant colony optimization

Parameter3 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

No. animals with

2 alleles known 258 260 250 251 670 652 811 787

1 allele known 528 486 2940 2793 2263 2153 2167 2063

Benefit function 6714 6007 7944 7402 8020 7498 8055 7550

AKP 10.44 (0.007) 10.05 (0.007) 34.40 (0.005) 32.94 (0.005) 36.03 (0.007) 34.57 (0.009) 37.89 (0.006) 36.29 (0.003)

AKG 67.14 (1.36) 60.07 (0.66) 79.44 (1.31) 74.02 (0.41) 80.20 (1.16) 74.98 (0.42) 80.55 (1.33) 75.71 (0.56)

APTG 0.51 (0.01) 0.44 (0.005) 0.59 (0.02) 0.52 (0.003) 0.62 (0.01) 0.56 (0.002) 0.63 (0.02) 0.57 (0.005)

1Results from approaches described by Spangler et al. (2008). Random, 5% selected at random; Males, 5% of males selected from their diagonal

element of A)1; Males and females, 2.5% males and 2.5% females selected from their diagonal element of A)1.
2Results are the average of five replicates.
3Descriptions of the parameters can be found in equations (5)–(10).
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the homozygosity of the genotyped animals, are critical in

the selection process. Consequently, in application it will

be critical to have good estimates of allele frequencies

prior to implementing the genotype sampling strategy

proposed in the current study. Differences in performance

of ACO do exist between the pedigrees explored in the

current study. This is due to the proportion of sires and

dams that have large numbers of offspring and/or mates.

In the dairy industry, for example, there may be only a

small number of sires in a pedigree but they may all be

used heavily, as in the case of the simulated pedigrees in

the current study. The same could be true in the swine

industry, as illustrated by Macrossan et al. (2006), where

sampling sires only proved more beneficial than sampling

both sires and dams, under the assumption that each sire

would be mated to 40 females. In contrast, a pedigree

from the beef industry may have a larger proportion

of sires but a large number of them may be used less

frequently. Furthermore, pedigrees from field data or from

research projects will also have innate structural differ-

ences. Research projects may be limited by the size of the

population and thus only use a small number of sires. In

this scenario, it would also be possible for higher rates of

inbreeding and larger numbers of loops in a pedigree

because of a large number of full-sibs.

In the current study, the simulated pedigrees are com-

posed of approximately 10% sires, while the large beef cattle

pedigree and the small research beef cattle pedigree contain

approximately 16% and 7% sires respectively. Intuitively, as

the proportion of sires goes up, the number of offspring per

sire goes down. This explains the similarity of the results

between the simulated pedigrees and the small research

pedigree. Thus, it is expected that the ACO algorithm will be

superior to other alternatives when very small (a few

hundred animals) pedigrees are considered, or in situations

where more than 5% of animals are genotyped because of a

reduction in the number of animals with large diagonal

elements in A)1.

Table 3 Number of animals with one or two alleles known, percentage of alleles known (SD) and probability of assigning the true genotype (SD)

from multiple approaches1 compared to ant colony optimization using a research pedigree.

True allele frequency

Random Males Males and females Ant colony optimization

Parameter2 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

No. animals with

2 alleles known 452 458 438 439 1082 751 975 720

1 allele known 847 682 5525 4132 4747 3768 5101 4009

Benefit function 9719 8284 14 113 12 018 13 743 11 848 13 916 11 991

AKP 10.08 9.19 36.84 28.83 39.77 30.33 40.58 31.36

AKG 55.94 47.68 81.22 69.16 79.09 68.19 80.09 68.15

APTG 0.50 0.43 0.69 0.51 0.68 0.52 0.69 0.52

1Results from approaches described by Spangler et al. (2008). Random, 5% selected at random; Males, 5% of males selected from their diagonal

element of A)1; Males and females, 2.5% males and 2.5% females selected from their diagonal element of A)1.
2Descriptions of the parameters can be found in equations (5)–(10).

Table 2 Number of animals with one or two alleles known, percentage of alleles known (SD) and probability of assigning the true genotype (SD)

from multiple approaches1 compared to ant colony optimization using a field data pedigree.

True allele frequency

Random Males Males and females

Ant colony

optimization

Parameter2 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

No. animals with

2 alleles known 1505 1501 1473 1470 2086 1999 1767 1706

1 allele known 2508 2144 11 756 10 607 10 376 9398 11 451 10 382

Benefit function 20 569 18 609 34 877 32 282 34 005 31 456 34 978 32 547

AKP 9.48 8.84 25.26 23.28 24.99 23.02 25.75 23.70

AKG 35.34 31.97 59.92 55.47 58.43 54.05 60.10 55.92

APTG 0.39 0.35 0.44 0.39 0.44 0.40 0.45 0.40

1Results from approaches described by Spangler et al. (2008). Random, 5% selected at random; Males, 5% of males selected from their diagonal

element of A)1; Males and females, 2.5% males and 2.5% females selected from their diagonal element of A)1.
2Descriptions of the parameters can be found in equations (5)–(10).
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One assumption of the current study is that the allelic

frequencies are known. Macrossan & Kinghorn (2003b)

showed that incorrect assumptions of population allele fre-

quencies could alter the performance of segregation analysis

in the context of selective genotyping and calculating

genotype probabilities for ungenotyped animals, particu-

larly when the assumption is of an extreme frequency (i.e.

01.) and that an assumption of an intermediate frequency is

more robust. In the case when a small number of animals,

perhaps even one, are used to approximate the population

frequencies, then the probability of error is higher. As the

number of animals sampled increases, then it is reasonable

to assume that the accuracy of the assumed allele fre-

quencies is greater. Spangler et al. (2008) used the same

pedigrees as used in the current study and explored the

differences between using estimated allele frequencies from

the sampled animals and assuming that they were known.

Due to the fact that the simulated genotypes are randomly

assigned in the base population and thus not subject to the

effects of artificial selection, the estimated allele frequencies

are virtually identical to the true values. The effects of

selection over time could impact the ability to sample few

animals and accurately determine allelic frequency. How-

ever, all methods would be subject to this error and it would

be reasonable to assume that ACO would still show

advantages over the other methods illustrated by Spangler

et al. (2008).

Ant colony optimization offers a new and unique solution

to the optimization problem of selecting individuals for

genotyping. The heuristics used in the current study such as

the number of ants, number of iterations and the evapora-

tion rate are unique only to the pedigrees used in the cur-

rent study. Each pedigree will offer a different structure and

thus require a different set of parameters. However, the

proposed method was found to be fairly robust with regard

to proposed heuristic parameters. Finally, ACO was superior

even with the simplistic pheromone function used in this

study. The choice of an accuracy function drives the per-

formance of the algorithm and it is possible that more

sophisticated functions, which more completely exploit the

pedigree structure, could increase performance but may

become more computationally costly. This is an area where

further research is being conducted.
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